19 novembre 2010

La strana relazione tra neutrini solari e radioattività

Me ne sono accorto solo ora ma la storia pubblicata dallo Stanford Report mi sembra bellissima. Un gruppo di scienziati della Purdue University, interessata a servirsi del decadimento dei nuclei radioattivi per generare numeri casuali per applicazioni matematiche, scopre che contrariamente agli andamenti teorici questo decadimento - che dovrebbe essere costante - rivela inspiegabili tracciati di irregolarità. Confrontando i loro dati con quelli misurati presso altri istituti in America e in Germania i ricercatori fanno una scoperta ancora più sorprendente. Le variazioni subite dai tassi di decadimento teorici ha un andamento stagionale, sono diversi in inverno e in estate.
Convinti a questo punto che qualcosa stava succedendo ma non riuscendo a escludere possibili errori strumentali, gli scienziati continuano a misurare finche nel dicembre del 2006, proprio in corrispondenza di un forte brillamento solare, l'ingegnere nucleare Jere Jenkins trova una precisa correlazione tra le variazioni misurate per il manganese-57 un isotopo per applicazioni mediche e la grande esplosione avvenuta sul sole. Non solo, il rallentamento del decadimento ha inizio addirittura un giono e mezzo prima. Ma come è possibile per un brillamento influenzare la radioattività di elementi posti alla distanza terra-sole? L'unica risposta, affermano gli scienziati, è che in qualche modo i neutrini del sole, quelle particelle ultra-elusive che stiamo cercanod di rilevare nel Gran Sasso, devono essere legati al decadimento misurato sul pianeta terra. Ancora nessuno sa dire quale possa essere questo modo. Mistero nel mistero, la ciclicità della variazione ha un andamento di circa 33 giorni, contro i 28 del sole. Ma perché? Anche qui c'è per il momento una sola spiegazione possibile: il nucleo centrale del sole ruota più lentamente del resto e i nutrini vengono da lì. Ora gli scienziati sembrano disporre di un metodo predittivo di fenomeni che possono influire pesantemente sull'esplorazione spaziale e il funzionamento dei satelliti. Ma soprattutto si trovano davanti a un meccanismo di causa effetto che - se confermato - potrebbe aprirci nuove prospettive nel nostro studio della materia.

Stanford Report, August 23, 2010

The strange case of solar flares and radioactive elements

When researchers found an unusual linkage between solar flares and the inner life of radioactive elements on Earth, it touched off a scientific detective investigation that could end up protecting the lives of space-walking astronauts and maybe rewriting some of the assumptions of physics.


It's a mystery that presented itself unexpectedly: The radioactive decay of some elements sitting quietly in laboratories on Earth seemed to be influenced by activities inside the sun, 93 million miles away. Is this possible?

Researchers from Stanford and Purdue University believe it is. But their explanation of how it happens opens the door to yet another mystery.
There is even an outside chance that this unexpected effect is brought about by a previously unknown particle emitted by the sun. "That would be truly remarkable," said Peter Sturrock, Stanford professor emeritus of applied physics and an expert on the inner workings of the sun.
The story begins, in a sense, in classrooms around the world, where students are taught that the rate of decay of a specific radioactive material is a constant. This concept is relied upon, for example, when anthropologists use carbon-14 to date ancient artifacts and when doctors determine the proper dose of radioactivity to treat a cancer patient.

Random numbers

But that assumption was challenged in an unexpected way by a group of researchers from Purdue University who at the time were more interested in random numbers than nuclear decay. (Scientists use long strings of random numbers for a variety of calculations, but they are difficult to produce, since the process used to produce the numbers has an influence on the outcome.)
Ephraim Fischbach, a physics professor at Purdue, was looking into the rate of radioactive decay of several isotopes as a possible source of random numbers generated without any human input. (A lump of radioactive cesium-137, for example, may decay at a steady rate overall, but individual atoms within the lump will decay in an unpredictable, random pattern. Thus the timing of the random ticks of a Geiger counter placed near the cesium might be used to generate random numbers.)
As the researchers pored through published data on specific isotopes, they found disagreement in the measured decay rates – odd for supposed physical constants.
Checking data collected at Brookhaven National Laboratory on Long Island and the Federal Physical and Technical Institute in Germany, they came across something even more surprising: long-term observation of the decay rate of silicon-32 and radium-226 seemed to show a small seasonal variation. The decay rate was ever so slightly faster in winter than in summer.
Was this fluctuation real, or was it merely a glitch in the equipment used to measure the decay, induced by the change of seasons, with the accompanying changes in temperature and humidity?
"Everyone thought it must be due to experimental mistakes, because we're all brought up to believe that decay rates are constant," Sturrock said.

The sun speaks

On Dec 13, 2006, the sun itself provided a crucial clue, when a solar flare sent a stream of particles and radiation toward Earth. Purdue nuclear engineer Jere Jenkins, while measuring the decay rate of manganese-54, a short-lived isotope used in medical diagnostics, noticed that the rate dropped slightly during the flare, a decrease that started about a day and a half before the flare.
If this apparent relationship between flares and decay rates proves true, it could lead to a method of predicting solar flares prior to their occurrence, which could help prevent damage to satellites and electric grids, as well as save the lives of astronauts in space.
The decay-rate aberrations that Jenkins noticed occurred during the middle of the night in Indiana – meaning that something produced by the sun had traveled all the way through the Earth to reach Jenkins' detectors. What could the flare send forth that could have such an effect?
Jenkins and Fischbach guessed that the culprits in this bit of decay-rate mischief were probably solar neutrinos, the almost weightless particles famous for flying at almost the speed of light through the physical world – humans, rocks, oceans or planets – with virtually no interaction with anything.
Then, in a series of papers published in Astroparticle Physics, Nuclear Instruments and Methods in Physics Research and Space Science Reviews, Jenkins, Fischbach and their colleagues showed that the observed variations in decay rates were highly unlikely to have come from environmental influences on the detection systems.

Reason for suspicion

Their findings strengthened the argument that the strange swings in decay rates were caused by neutrinos from the sun. The swings seemed to be in synch with the Earth's elliptical orbit, with the decay rates oscillating as the Earth came closer to the sun (where it would be exposed to more neutrinos) and then moving away.
So there was good reason to suspect the sun, but could it be proved?
Enter Peter Sturrock, Stanford professor emeritus of applied physics and an expert on the inner workings of the sun. While on a visit to the National Solar Observatory in Arizona, Sturrock was handed copies of the scientific journal articles written by the Purdue researchers.
Sturrock knew from long experience that the intensity of the barrage of neutrinos the sun continuously sends racing toward Earth varies on a regular basis as the sun itself revolves and shows a different face, like a slower version of the revolving light on a police car. His advice to Purdue: Look for evidence that the changes in radioactive decay on Earth vary with the rotation of the sun. "That's what I suggested. And that's what we have done."

A surprise

Going back to take another look at the decay data from the Brookhaven lab, the researchers found a recurring pattern of 33 days. It was a bit of a surprise, given that most solar observations show a pattern of about 28 days – the rotation rate of the surface of the sun.
The explanation? The core of the sun – where nuclear reactions produce neutrinos – apparently spins more slowly than the surface we see. "It may seem counter-intuitive, but it looks as if the core rotates more slowly than the rest of the sun," Sturrock said.
All of the evidence points toward a conclusion that the sun is "communicating" with radioactive isotopes on Earth, said Fischbach.
But there's one rather large question left unanswered. No one knows how neutrinos could interact with radioactive materials to change their rate of decay.
"It doesn't make sense according to conventional ideas," Fischbach said. Jenkins whimsically added, "What we're suggesting is that something that doesn't really interact with anything is changing something that can't be changed."
"It's an effect that no one yet understands," agreed Sturrock. "Theorists are starting to say, 'What's going on?' But that's what the evidence points to. It's a challenge for the physicists and a challenge for the solar people too."
If the mystery particle is not a neutrino, "It would have to be something we don't know about, an unknown particle that is also emitted by the sun and has this effect, and that would be even more remarkable," Sturrock said.

Nessun commento: