Alla manifestazione specializzata CANSEC, mostra canadese di tecnologie militari,
Spectrum Signal Processing, azienda dello stato del British Columbia, ha presentato un modulo SDR (serie flexComm 4803) per le comunicazioni satellitari tra 800 MHz e 2.4 GHz. Sviluppata per applicazioni portatili (SATCOM-on-the-move). Una FPGA controlla la ricezione e la trasmissione di flussi audio/video fino a 1.5 gbps su modulazioni OFDM. Ovviamente con la flessibilità della radio definitiva via software. Interessante il fatto che oltre alle applicazioni "in campo" per militari, sono supportate anche le comunicazioni commerciali.
Riporto qui lo schema funzionale e il comunicato stampa Spectrum Signal Processing.
Spectrum Signal Processing, azienda dello stato del British Columbia, ha presentato un modulo SDR (serie flexComm 4803) per le comunicazioni satellitari tra 800 MHz e 2.4 GHz. Sviluppata per applicazioni portatili (SATCOM-on-the-move). Una FPGA controlla la ricezione e la trasmissione di flussi audio/video fino a 1.5 gbps su modulazioni OFDM. Ovviamente con la flessibilità della radio definitiva via software. Interessante il fatto che oltre alle applicazioni "in campo" per militari, sono supportate anche le comunicazioni commerciali.
Riporto qui lo schema funzionale e il comunicato stampa Spectrum Signal Processing.
BURNABY, BRITISH COLUMBIA -- 04/03/08 -- Spectrum Signal Processing by Vecima ("Spectrum"), a provider of software defined radio (SDR) technology, today announced that it will conduct a live demonstration of the flexComm SDR-4803 SATCOM Embedded Radio Module during CANSEC in Ottawa, Ontario, April 9-10, 2008. The SDR-4803 is designed for use in defense and civil satellite communications (SATCOM) systems and is the first variant of the SDR-4800 family of Embedded Radio Modules. The demonstrator module integrates a high-performance RF front-end with digital modem processing into a single card making it ideal for size, weight, and power constrained applications such as SATCOM-on-the-Move (SOTM) terminals.
"Spectrum recognizes that each communications program is unique and that standard commercial off-the-shelf (COTS) solutions may not readily meet all deployment needs of a specific program," commented Mark Briggs, VP of Marketing at Spectrum. "By combining rapid customization capabilities with our best-in-class application services, Spectrum can provide a tailored solution that meets our customers' specific program needs. In addition to providing tailored technical solutions, Spectrum also offers flexible business models that match our customers' business needs."
"The SDR-4803 Demonstrator offers system developers an existing off-the-shelf radio design which can be incorporated into their concept system architecture," explains Cyrus Sy, Product Manager at Spectrum. "Spectrum can then tailor the hardware to meet specific RF, analog, digital baseband processing, and I/O requirements in as little as 90 calendar days. As a result, system developers will effectively be able to augment their in-house design teams and retire a significant level of technical and schedule risk. Furthermore, Spectrum's responsive technical support and comprehensive life cycle management services can support fielded systems throughout the long deployment phase typical of defense procurements."
Demonstration Overview
The demonstration features two rugged, conduction-cooled SDR-4803 Demonstrator modules each containing an embedded single channel RF stage and Field Programmable Gate Array (FPGA) SoC processor to transmit and receive a video and audio data stream at up to T1 speeds (1.5 Mbps) using an OFDM-based waveform. Additional information on the SDR-4803 SATCOM Embedded Radio Module Demonstrator can be found at www.spectrumsignal.com/products.
RF Tailored for SATCOM Applications
The SDR-4803 Demonstrator features an embedded single-input, single-output RF stage operating between 800 MHz and 2.4 GHz. This wide range covers the L-band IF frequencies typical in SATCOM applications with analog bandwidths up to 60 MHz. L-Band performance is comparable to standard off-the-shelf 1U rackmount L-Band RF block upconverters and downconverters but at a fraction of the size and power. The high-performance front-end offers superior noise performance required to run high-order modulation formats, such as 32 APSK. Furthermore, the modular design of the SDR-4800 allows Spectrum to rapidly customize the RF or analog section for other frequency bands such as HF and VHF/UHF.
Reducing Size, Weight and Power with FPGA System-On-Chip Technology
The SDR-4800 product family is built around Xilinx FPGA SoC technology as the primary modem processor. The SDR-4803 Demonstrator uses a Virtex-4(TM) FX100, providing FPGA resources for channelization and other physical layer processing. The embedded 405GP general purpose processor (GPP) is intended for networking, security and payload data processing functions. Using a single chip combining an FPGA and GPP processor helps developers minimize the overall size and power consumption of the radio system.
Co-Processor Options to Optimize Waveform Partitioning
The SDR-4803 Demonstrator features a modem co-processor: a Texas Instruments TMS320C6455 digital signal processor (DSP). However, a variety of build options are available including FPGA, PowerPC, or other custom application-specific integrated circuits (ASICs). A modem co-processor provides developers flexibility in finding the optimal mix of processing resources and to support legacy waveform code.
Ready for Integration into Rugged Communication Systems
The SDR-4803 Demonstrator hardware has several external peripheral interfaces for payload, control, and security processing. These external interfaces include IRIG-B, Gigabit Ethernet, Serial Port, USB, and digital general purpose I/O. In addition to on-board memory for the FPGA and DSP processor, the on-board Flash memory provides ample storage for all waveform and application binaries for fully embedded stand-alone operation. The rugged design of the SDR-4800 allows for operation in harsh environments, such as those with extended temperature range exposure, as well as shock and vibration requirements.
Simplify Waveform Development with Standards-Based Application Programming Interfaces (APIs) and Application Framework
The SDR-4803 demonstration features the Wind River VxWorks operating system. Other supported operating systems include Green Hills INTEGRITY and Linux. Developers can significantly reduce their integration and porting time of application software and waveforms through the use of standards-based hardware abstraction layers, such as Open Cores Protocol (OCP) on the FPGA or eXpressDSP(TM) on the DSP. Using standards-based APIs can significantly simplify platform programming and facilitate code portability. Customers requiring support for an industry-standard application framework can also request support for the Software Communications Architecture (SCA) and CORBA middleware.
Cost-Effective Deployments through Flexible Business Models
The SDR-4800 product family is designed for volume production. Depending on the exact hardware configuration and level of customization required, pricing for SDR-4800 radio modules start at under $5,000 USD per unit. Other business models include manufacturing license agreements and comprehensive technology transfer license agreements.
1 commento:
La presentazione di questo modulo satellitare da parte di Lawandel è la dimostrazione che anche in campo professionale non è più possibile fare a meno delle costose FPGA.
Negli ultimi 12 mesi sono aumentati in maniera esponenziale i costi di progettazione/ realizzazione degli ASIC customizzati.(In pratica i chips dal costo finale da due soldi ).
Ormai sono pochissimi non solo i prodotti( Ipod,Pc,Decoders,Telefonino,Gps) ma anche i marchi che possono vantare un mercato di destinazione di dimensioni tali da permettere l’assorbimento di costi elevatissimi.(Ricordo che nel 1992 si spendeva circa 120 milioni di lire,per il Top degli Asic ( velocità e capienza) nei primi mesi di quest'anno non bastano 10 milioni di Euro (120nm ,10Mgates) con il rischio rifare le maschere per un banale errore.
Quindi un futuro dove i ricevitori SDR non solo avranno sempre più costose FPGA "vergini" e PC outside o inside ) ma ci sarà sempre più una richiesta di ingegneri per la progettazione logica di questo ormai insostituibile componente. Componente che causa la sua inefficienza del silicio, aumento degli assorbimenti e costo alto rispetto agli Asic sembrava destinato a funzioni di contorno e non fondamentali.
Posta un commento