Visualizzazione post con etichetta sensor networks. Mostra tutti i post
Visualizzazione post con etichetta sensor networks. Mostra tutti i post

14 novembre 2011

ITN, sensori e radiocomunicazioni al servizio di un traffico più smart

Parte mercoledì 16 novembre al Lingotto di Torino l'appuntamento con il salone ITN, dedicato come al solito alla telematica veicolare, la gestione intelligente del traffico e l'infotainment. Molti i motivi di interesse nei confronti di tecnologie che si basano su infrastrutture di radiocomunicazione terrestri e satellitare, ma anche su standard e sensori RF per il trasporto "prossimale" di informazioni (vehicle-to-vehicle communication, sistemi di prevenzione degli incidenti e così via). Ecco i due convegni che mi paiono più stimolanti


TELEMATICS AND NAVIGATION

La telematica, la navigazione satellitare, l’infomobilità e i servizi di localizzazione

Una fotografia attuale e aggiornata delle dinamiche di un mercato in rapida e costante evoluzione, sempre più importante nella ripresa e sviluppo del Paese: scenari di mercato, trend, opportunità, investimenti e sistemi di finanziamento all’innovazione, player del mercato, applicazioni e servizi.

Chairman: Michael Sandrock, Chairman, TelematicsPro eV

9:00 Registrazione

9:30 Apertura lavori

9:45
“The implementation of the harmonised interoperable EU-wide eCall in Europe”
Pierpaolo Tona, Project Officer of the European Commission, unit "ICT for Transport" of the Directorate General for Information Society and Media

10:05
“ITS for Connected Mobility”
Rasmus Lindholm, Head of Partnership Services & Communication at ERTICO, ITS Europe

10:25
“L’automotive e i benefici dei servizi globali di connettività gestita M2M – Automotive and managed global M2M connectivity services benefits”
Marco Canesi, Sales & Marketing Manager M2M – Italy, Vodafone

10:55
"Information on Mobility: an End to End Approach"
Antonio Romano, Senior independent advisor in the ICT market

11:15 Coffee break

11:45

“Intelligent Transport Systems - More Mobility and more Traffic Safety” Thomas Kuhn, Senior Manager Advanced Technologies Infotainment & Connectivity, Continental Automotive

12:05

“Have crowd-sourcing and free routing breached the barriers to entry to the navigation fortress” Michael L. Sena, President, Michael L. Sena Consulting

***

Giovedì 17 novembre 2011 ore 14:30 -16:30 sala Forlanini - OVAL

ON-BOARD TELEMATICS AND CAR SENSOR

L'evoluzione delle tecnologie e l'integrazione con le reti di telecomunicazione

La telematica di bordo, i sistemi di navigazione e le comunicazioni digitali senza fili per lo sviluppo di applicazioni automotive di nuova generazione.

L’evoluzione delle tecnologie e l’integrazione con le reti di telecomunicazioni sono fondamentali per il segmento di mercato dell’auto. E la proposta di un veicolo intelligente richiede un’interazione tra diversi player, dai produttori, ai dealer ai network di assistenza.

Panoramica delle tecnologie, applicazioni e opportunità di business: dalle piattaforme telematiche ai sistemi di navigazione e servizi satellitari professionali e consumer, con un focus su test software, interfacce di programmazione, sensori, antenne, terminali, ricetrasmettitori mobili, telecontrollo e accessori.

Chairman: Francesco Lilli, Centro Ricerche Fiat, ATA member

14:30 Apertura dei Lavori

14:45
“Gli strumenti per lo studio delle comunicazioni nelle reti veicolari”
Daniele Brevi, Responsabile del laboratorio Broadband Wireless Access (BWA), Istituto Superiore Mario Boella

15:05
“SafeTRIP: Una piattaforma aperta per servizi ITS su reti ibride satellitari/terrrestri" Sabino Titomanlio, M.B.I. Business development and innovation director Membro del Core Group of the SafeTRIP consortium

15:35
“In Vehicle Infotainment and Open Source”
Luca Fogli, Responsabile Laboratorio Infotainment per l'unità di business Automotive, Intecs

16:05
“Controllo dei movimenti oculari e performances di guida”
Giorgio Guidetti, Direttore dell'U.O.s. di Audio-Vestibologia dell'azienda USL di Modena presso l'Ospedale Ramazzini di Carpi

***

Venerdì 18 novembre 2011 ore 9:30 - 13:00 sala Forlanini - OVAL

TELEMATICS AND INFRASTRUCTURES

Programmi telematici e infrastrutturali, strategie territoriali e innovazioni tecnologiche

Telematica, navigazione satellitare e localizzazione, tecnologie chiave di una società mobile e mercato con un notevole potenziale di crescita.

Approfondimento sui progetti per la gestione “intelligente” di territori e di infrastrutture, dalla progettazione di applicazioni che rendono le infrastrutture reattive alle sollecitazioni esterne, a quelle per ottenere informazioni intelligenti dai territori.

Chairman: Elena Comelli, Giornalista

9:00 Registrazione

9:30 Apertura dei Lavori

SALUTO DI BENVENUTO:

9:45 Bartolomeo Giachino, Sottosegretario Ministero Infrastrutture e Trasporti

10:00 Barbara Bonino, Assessore Regionale ai Trasporti, alle Infrastrutture, alla Mobilità e alla Logistica

10:15
“Verso il recepimento della Direttiva ITS in Italia: opportunità e prospettive nazionali”
Rossella Panero, Presidente, TTS Itala

10:30
“Dalle infrastrutture alla banda larga: il sistema camerale per lo sviluppo competitivo del territorio”
Antonello Fontanili, Direttore Uniontrasporti

10:45

“UIRNet: i servizi ed il modello di sviluppo del mercato”

Rodolfo de Dominicis, Presidente e Amministratore Delegato, UIRNet

11:00
“Viabilità 2.0 - L'infomobilità dalla mappa stradale cartacea a Twitter”
Giuseppe Scanni, Direttore Centrale Relazioni Esterne e Rapporti Istituzionali, ANAS

11:15 Coffee break

11:35

“Dai Dati alle App”

Gianluca Di Pasquale, Senior Advisor, Between, Esperto mercato Smart City

11:50
“Traffico: Inizia la rivoluzione!”
Claudio Clausi, Vice President Sales Europe e Middle East, Tom Tom Licensing Business Unit

12:10
“Il Traffic Operation Centre della Regione Piemonte: sfida tecnologica ed organizzativa”
Matteo Antoniola, Sviluppo del Business, 5T

12:25
“Infrastrutture “smart” per città “smart”: la convergenza delle reti al servizio del territorio”
Massimiliano Veltroni, Direttore Business Unit Sicurezza, Selex Elsag e Amministratore Delegato, Selex Service Management

12:40
"Le tecnologie dell’informazione e della comunicazione per la mobilità pubblica"
Michele Ieradi, Esperto di ITS applicati alla progettazione e realizzazione di servizi di Infomobilità per il cittadino (Trasporto Pubblico e sostenibile)

17 marzo 2011

Una radio da un millimetro cubo contro il glaucoma

I ricercatori dell'Università del Michigan hanno messo a punto un sensore di pressione intra-oculare da utilizzare per il monitoraggio preventivo dell'insorgenza di glaucoma. Un sistema computerizzato che ha le dimensioni di una lettera "N" sulla moneta da un centesimo di dollaro! Il risvolto più interessante per noi è la presenza di un sofisticato sistema di trasmissione dati FSK "near-field", con una antenna realizzata con tecniche di incisioni CMOS che ha una dimensione complessiva di 1,2 x 1,6 millimetri e risuona nella banda dei 60 GHz consumando pochi nanoWatt (e non ha bisogno di cristallo di riferimento, essendo "auto-riferita"). La batteria che alimenta il sistema, programmato per rilevare la pressione ogni 15 minuti e accumulare fino a una settimana di misurazioni, che possono essere "scaricate" eccitando la radio di bordo dall'esterno. L'ingegnerizzazione di questa picolla meraviglia apre la strada a un mondo di applicazioni
basate su reti di sensori praticamente invisibili. Quello che segue è il testo del comunicato stampa di UniMichigan, ma tre dei responsabili del progetto, David Blaauw, David Wentzloff e Dennis Sylvester, hanno pubblicato un più dettagliato articolo sulla parte RF, "Shrinking radios for millimeter-scale computers". Lo trovate su EEtimes.

Toward computers that fit on a pen tip: New technologies usher in the millimeter-scale computing era

ANN ARBOR, Mich.---A prototype implantable eye pressure monitor for glaucoma patients is believed to contain the first complete millimeter-scale computing system.
And a compact radio that needs no tuning to find the right frequency could be a key enabler to organizing millimeter-scale systems into wireless sensor networks. These networks could one day track pollution, monitor structural integrity, perform surveillance, or make virtually any object smart and trackable.
Both developments at the University of Michigan are significant milestones in the march toward millimeter-scale computing, believed to be the next electronics frontier.
Researchers present papers on each today at the International Solid-State Circuits Conference (ISSCC) in San Francisco. The work is being led by three faculty members in the U-M Department of Electrical Engineering and Computer Science: professors Dennis Sylvester and David Blaauw, and assistant professor David Wentzloff.

Bell's Law and the promise of pervasive computing

Nearly invisible millimeter-scale systems could enable ubiquitous computing, and the researchers say that's the future of the industry. They point to Bell's Law, a corollary to Moore's Law. (Moore's says that the number of transistors on an integrated circuit doubles every two years, roughly doubling processing power.)
Bell's Law says there's a new class of smaller, cheaper computers about every decade. With each new class, the volume shrinks by two orders of magnitude and the number of systems per person increases. The law has held from 1960s' mainframes through the '80s' personal computers, the '90s' notebooks and the new millennium's smart phones. "When you get smaller than hand-held devices, you turn to these monitoring devices," Blaauw said. "The next big challenge is to achieve
millimeter-scale systems, which have a host of new applications for monitoring our bodies, our environment and our buildings. Because they're so small, you could manufacture hundreds of thousands on one wafer. There could be 10s to 100s of them per person and it's this per capita increase that fuels the semiconductor industry's growth."

The first complete millimeter-scale system

Blaauw and Sylvester's new system is targeted toward medical applications. The work they present at ISSCC focuses on a pressure monitor designed to be implanted in the eye to conveniently and continuously track the progress of glaucoma, a potentially blinding disease. (The device is expected to be commercially available several years from now.)
In a package that's just over 1 cubic millimeter, the system fits an ultra low-power microprocessor, a pressure sensor, memory, a thin-film battery, a solar cell and a wireless radio with an antenna that can transmit data to an external reader device that would be held near the eye. "This is the first true millimeter-scale complete computing system," Sylvester said. "Our work is unique in the sense that we're thinking about complete systems in which all the components are low-power and fit on the chip. We can collect data, store it and transmit it. The applications for
systems of this size are endless."
The processor in the eye pressure monitor is the third generation of the researchers' Phoenix chip, which uses a unique power gating architecture and an extreme sleep mode to achieve ultra-low power consumption. The newest system wakes every 15 minutes to take measurements and consumes an average of 5.3 nanowatts. To keep the battery charged, it requires exposure to 10 hours of indoor light each day or 1.5 hours of sunlight. It can store up to a week's worth of information. While this system is miniscule and complete, its radio doesn't equip it to talk to other devices like it. That's an important feature for any system targeted toward wireless sensor networks.

A unique compact radio to enable wireless sensor networks

Wentzloff and doctoral student Kuo-Ken Huang have taken a step toward enabling such node-to-node communication. They've developed a consolidated radio with an on-chip antenna that doesn't need the bulky external crystal that engineers rely on today when two isolated devices need to talk to each other. The crystal reference keeps time and selects a radio frequency band. Integrating the antenna and eliminating this crystal significantly shrinks the radio system. Wentzloff's is less than 1 cubic millimeter in size.
He and Huang's key innovation is to engineer the new antenna to keep time on its own and serve as its own reference. By integrating the antenna through an advanced CMOS process, they can precisely control its shape and size and therefore how it oscillates in response to electrical signals.
"Antennas have a natural resonant frequency for electrical signals that is defined by their geometry, much like a pure audio tone on a tuning fork," Wentzloff said. "By designing a circuit to monitor the signal on the antenna and measure how close it is to the antenna's natural resonance, we can lock the transmitted signal to the antenna's resonant frequency."
"This is the first integrated antenna that also serves as its own reference. The radio on our chip doesn't need external tuning. Once you deploy a network of these, they'll automatically align at the same frequency." The researchers are now working on lowering the radio's power consumption so that it's compatible with millimeter-scale batteries.
Greg Chen, a doctoral student in the Department of Electrical Engineering and Computer Science, presents "A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor." The researchers are collaborating with Ken Wise, the William Gould Dow Distinguished University Professor of Electrical Engineering and Computer Science on the packaging of the sensor, and with Paul Lichter, chair of the Department of Ophthalmology and Visual Sciences at the U-M Medical School, for the implantation studies. Huang presents "A 60GHz Antenna-Referenced Frequency-Locked Loop in 0.13μm CMOS for Wireless Sensor Networks." This research is funded by the National Science Foundation. The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

19 luglio 2010

Onde radio al posto di batterie, RF Power harvesting

La tecnologia si chiama RF Energy harvesting e consiste nel costruire dispositivi elettronici (tipicamente sensori, magari con microtrasmettitori integrati per applicazioni di remote sensing) che non hanno bisogno di batterie o le cui batterie vengono ricaricate dai campi elettrici captati in una ampia finestra di spettro. Ormai il nostro etere è talmente saturo di questi campi che questa tecnologia comincia ad avere vita facile. Anche pochi milliVolt di campo bastano per arrivare ad alimentare i sensori più parchi di energia. Secondo Economist e New York Times (grazie a Francesco D. per la segnalazione) che hanno dedicato alla questione due interessanti reportage, i ricercatori stanno lavorando alla confluenza dell'elettronica a bassissimo assorbimento e l'Energy harvesting, per realizzare dispositivi che non hanno bisogno di sorgenti di alimentazione esterne. Tra le aziende citate c'è la società PowerCast, che ha sviluppato diversi moduli e ha un blog specializzato RFWirelessSensors sull'argomento.
Si è parlato in questi giorni di raggi della morte ed energia dal nulla, l'energy harvesting rientra nella categoria "sogni di Tesla", insieme ai sistemi a induzione che oggi ci consento di ricaricare spazzolini elettrici e anche telefoni cellulari e computer portatili. Per ora non si può fare molto più di così, a meno di non trovarsi ai piedi delle antenne del Vaticano, ma nella futura prospettiva della Internet degli oggetti la possibilità di usare dispositivi completamente autonomi, in grado di alimentarsi con la radiofrequenza ricevuta apre le strade a infinite opportunità. Solo nelle nostre case ci possono essere decine di apparecchi che potrebbero un giorno fare a meno di prese di corrente e inquinanti cilindretti non ricaricabili.

July 16, 2010
Bye-Bye Batteries: Radio Waves as a Low-Power Source
By ANNE EISENBERG

MATT REYNOLDS, an assistant professor in the electrical and computer engineering department at Duke University, wears other hats, too — including that of co-founder of two companies. These days, his interest is in a real hat now in prototype: a hard hat with a tiny microprocessor and beeper that sound a warning when dangerous equipment is nearby on a construction site.
What’s unusual, however, is that the hat’s beeper and microprocessor work without batteries. They use so little power that they can harvest all they need from radio waves in the air.
The waves come from wireless network transmitters on backhoes and bulldozers, installed to keep track of their locations. The microprocessor monitors the strength and direction of the radio signal from the construction equipment to determine if the hat’s wearer is too close.
Dr. Reynolds designed this low-power hat, called the SmartHat, with Jochen Teizer, an assistant professor in the school of civil and environmental engineering at Georgia Tech. They are among several people devising devices and systems that consume so little power that it can be drawn from ambient radio waves, reducing or even eliminating the need for batteries. Their work has been funded in part by the National Science Foundation.
Powercast, based in Pittsburgh, sells radio wave transmitters and receivers that use those waves to power wireless sensors and other devices. The sensors, for example, monitor room temperature in automatic systems that control heating and air-conditioning in office buildings, said Harry Ostaffe, director of marketing and business development.
The company recently introduced a receiver for charging battery-free wireless sensors, the P2110 Powerharvester Receiver, and demonstrated it in modules that sense temperature, light level and humidity data, he said. The modules include microcontrollers from Microchip Technology, in Chandler, Ariz.
Until recently, the use of radio waves to power wireless electronic devices was largely untapped because the waves dilute quickly as they spread, said Joshua R. Smith, a principal engineer at Intel’s research center in Seattle and an affiliate professor at the University of Washington.
“That’s changing,” said Dr. Smith, who explores the use of electromagnetic radiation. “Silicon technology has advanced to the point where even tiny amounts of energy can do useful work.”
Two types of research groups are extending the boundaries of low-power wireless devices, said Brian Otis, an assistant professor of electrical engineering at the University of Washington. Some researchers are working to reduce the power required by the devices; others are learning how to harvest power from the environment. “One day,” Professor Otis said, “those two camps will meet, and then we will have devices that can run indefinitely.”
Professor Otis, who designs and deploys integrated circuits for wireless sensing, is in the first group. Dr. Smith of Intel is one of the harvesters, gathering radio power that is now going to waste. And there are plenty of radio waves in the air to provide fodder for him as they spread from Wi-Fi transmitters, cellphone antennas, TV towers and radio stations.
Some of the waves travel to living-room televisions, for example. But others, which would otherwise be wasted as they rise through the atmosphere into space or are absorbed in the ground, can be exploited, he said. “Ambient radio waves,” he said, “can already provide enough energy to substitute for AAA batteries in some calculators, temperature and humidity sensors, and clocks.”
At Intel, Dr. Smith, working with the researcher Alanson Sample of the University of Washington, created an electronic “harvester” of ambient radio waves. It collects enough energy from a TV station broadcasting about 2.5 miles from the lab to run a temperature and humidity sensor.
The device collects enough power to produce about 50 microwatts of DC power, Dr. Smith said. That is enough for many sensing and computing jobs, said Professor Otis. The power consumption of a typical solar-powered calculator, for example, is only about 5 microwatts, he said, and that of a typical digital thermometer with a liquid crystal display is one microwatt.
DR. SMITH and his colleagues have built a second device, powered by radio waves, that collects signals from an outdoor weather station and transmits them to an indoor display. The unit can accumulate enough energy to send an updated temperature every five seconds.
Dr. Reynolds of Duke has long been interested in electronics and wireless equipment. One company he helped found, Zensi, developed a system to sense the amount of electricity used by home appliances; Zensi was bought by Belkin, an electronics concern.
Many electronic devices are limited by batteries that fade away or can’t survive temperature extremes, he said. But, he added, “we are on the cusp of an explosion in small wireless devices” than can run on alternatives to battery power. “Devices like this can live on and on,” he said.

10 aprile 2009

Personal area network, la radio a cortissima distanza

La visione di un mondo pervaso di oggetti dotati di un forma di intelligenza digitale, capacità di rilevamento ambientale (sensori) e funzioni di trasmissione o ricetrasmissione via radio di dati sta gradualmente assumento la concretezza di uno scenario futuribile ma non fantascientifico. Uno studio di ABI Research, società di analisi di mercato specializzata nelle applicazioni wireless, parla delle prospettive economiche del silicio rivolto a un nuovo standard di rete, una evoluzione della famiglia Ethernet utilizzata per l'interconnessione di sensori, dispositivi di elettronica di consumo (per esempio telecomandi) e altro ancora (per esempio infrastrutture per la gestione intelligente delle reti di distribuzione elettrica e il metering). Lo standard è regolato dall'IEEE con la sigla 802.15.4 per "personal area network" e "short range" che sta diventando la base di specifiche come ZigBee, WirelessHART e MiWi. I chip per questi dispositivi varranno nell'insieme mezzo miliardo di dollari entro 5 anni e si prevedono numerose applicazioni.
Underpinning a New Era of Standardized Wireless PANs, 802.15.4 Is Set for Strong Growth

LONDON - April 7, 2009

The market for IEEE 802.15.4 semiconductors, in both consumer electronics and commercial markets, is set for significant growth over the next five years as the standard becomes the foundation for a host of applications and systems.
That growth will see 802.15.4 chipset shipments grow from nearly 15 million in 2008 to nearly 499 million in 2014 — a CAGR (Compound Annual Growth Rate) of 79.6% over the period.
“Vendors across a range of industry verticals and applications are taking advantage of the availability of standardized 802.15.4 semiconductors to build their own proprietary and increasingly standardized equipment and systems,” says ABI Research principal analyst Jonathan Collins. The firm has just released a new study examining the potential for 802.15.4 semiconductors.
To date, the 802.15.4 market has grown steadily, based on proprietary point-to-point solutions and some ZigBee-based AMI infrastructure trials. Now 802.15.4 is also set to underpin a new generation of consumer electronics remote control solutions, developed by the RF4CE Consortium and recently rolled into the ZigBee Alliance. In addition, AMI trials and a growing interest in smart energy and utility management heralds a move towards full-scale smart energy solution rollouts.
While 802.15.4 will help drive broader standardization, the low-level nature of the physical and MAC layer specification will continue to provide a lower cost building block for many proprietary applications that can be hosted on 802.15.4 silicon. In fact while industry standard adoption will foster significant growth, proprietary markets will continue to account for the bulk of the market through 2014 although their dominance will recede greatly over the period.
”The 802.15.4 Chipset Market” provides insight into the 802.15.4 IC market dynamics and opportunities, and includes forecast data for unit shipments, average selling prices, and revenue to 2013. Additionally, it highlights the leading early adopter vertical markets, and forecasts 802.15.4 adoption among several different wireless sensor network verticals.

31 marzo 2008

LOFAR, antenne rubate all'agricoltura

Fioccano un po' ovunque, persino sulla faccia nascosta della luna, i progetti per la realizzazione di radiotelescopi nelle basse frequenze. In radioastronomia per "bassa frequenza" si intende una soglia inferiore ai 250 MHz, in cui sulla terra le antenne avrebbero parecchi problemi di interferenza. Un articolo del Guardian parla di un premio europeo (che tra parentesi coinvolge altri progetti seguiti da scienziati e ricercatori italiani, l'economista Luisa Corrado e l'ingegnere Andrea Ferrari, entrambi della Cambridge University) a Robert Nichol, cosmologo della Portsmouth University, per la sua collaborazione a LOFAR. Infine c'è il progetto SKA, Square Kilometer Array, un radiotelescopio a larga banda internazionale che dovrebbe essere ospitato in Australia o in Sud Africa (si deve ancora decidere, ma sembra che l'Australia abbia qualche chance in più). Anche SKA dovrebbe essere costruito entro il 2015-2020.

Europe-wide radio net in aliens search

Project will pick up clues from space on possible extraterrestrials and data on the early universe

Observer on Sunday March 30 2008

Scientists are finalising plans to link radio wave detectors in five countries and create a device sensitive enough to pick up signals from worlds the other side of the galaxy.
By connecting banks of detectors in fields across Britain, France, Holland, Sweden and Germany, astronomers aim to create a radio telescope that will have the accuracy of a machine the size of Europe. They believe it could solve some of the universe's most important secrets - including the discovery of radio broadcasts from intelligent extraterrestrials.
'This system works by collecting radio waves over a range of frequencies,' said cosmologist Robert Nichol of Portsmouth University. 'These can then be analysed using arrays of computers which can identify patterns from the data streaming from our detectors.
'Some of these signals will reveal information about the early universe, for example. However, broadcasts by alien intelligences would also be revealed by our computers because we will, primarily, be collecting radio signals. Signals that have regular patterns will give themselves away as the possible handiwork of extraterrestrials. Such work is a bonus, however. The main work of the system is basic research,' added Nichol.
The project - known as Lofar (low frequency array) - was launched in Holland several years ago, but has attracted the attention of other European astronomers. All have agreed to build their own banks of detectors, which can then be linked to those in Holland. Britain is committed to building one set, while requests for money for another three have been put to research councils.
(continua)
L'idea dietro a LOFAR sembra veramente una pensata di un gruppo di radioamatori: disseminare su scala continentale una rete di sensori RF da unire via software. Uno dei bersagli di queste antenne è la radiazione di fondo generata nei primi istanti di vita dell'universo. I sensori vengono "semplicemente" disseminati nelle aree a sfruttamento agricolo e operano in due segmenti 30-80 MHz e 120-240 MHz. Il sito LOFAR spiega tutto molto bene, incluse le tecniche di RFI mitigation, cioè di lotta e compensazione delle interferenze RF e la ricaduta in termini di opportunità di controllo e management delle risorse agricole. La rete di sensori - e stiamo parlando di almeno diecimila antenne - verrà integrata da sistemi per la misura del microclima agricolo, con l'obiettivo di combattere le malattie dei raccolti.
Nel frattempo al MIT e altrove sognano di costruire, con sistemi robotizzati, un analogo array sulla luna, anzi sulla sua faccia perennemente nascosta alla terra e alle sue fonti di interferenza. Vi suggerisco la lettura del comunicato stampa del MIT relativo al Moonscope.